On Totally Real Submanifolds

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

C-totally real warped product submanifolds

We obtain a basic inequality involving the Laplacian of the warping function and the squared mean curvature of any warped product isometrically immersed in a Riemannian manifold (cf. Theorem 2.2). Applying this general theory, we obtain basic inequalities involving the Laplacian of the warping function and the squared mean curvature of C-totally real warped product submanifolds of (κ, μ)-space ...

متن کامل

Lp Function Decomposition on C°° Totally Real Submanifolds of C

For 1 < p < oo we show that LP functions defined on a C°° totally real submanifold of C" can be locally decomposed into the sum of boundary values of holomorphic functions in wedges such that the boundary values are in LP . The general case of a C°° totally real submanifold is reduced to the flat case of R" in C" by an almost analytic change of variables. LP results in the flat case are then ob...

متن کامل

Totally Real Submanifolds in a Complex Projective Space

In this paper, we establish the following result: Let M be an n-dimensional complete totally real minimal submanifold immersed in CPn with Ricci curvature bounded from below. Then either M is totally geodesic or infr ≤ (3n+1)(n−2)/3, where r is the scalar curvature of M .

متن کامل

Kähler Submanifolds with Lower Bounded Totally Real Bisectional Curvature Tensor

In this paper, we prove that if every totally real bisectional curvature of an n(≥ 3)-dimensional complete Kähler submanifold of a complex projective space of constant holomorphic sectional curvature c is greater than c 4(n2−1)n(2n− 1), then it is totally geodesic. Mathematics Subject Classifications: 53C50, 53C55, 53C56.

متن کامل

Complex Monge–Ampère equations and totally real submanifolds

We study the Dirichlet problem for complex Monge–Ampère equations in Hermitian manifolds with general (non-pseudoconvex) boundary. Our main result (Theorem 1.1) extends the classical theorem of Caffarelli, Kohn, Nirenberg and Spruck in Cn. We also consider the equation on compact manifolds without boundary, attempting to generalize Yau’s theorems in the Kähler case. As applications of the main ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1974

ISSN: 0002-9947

DOI: 10.2307/1996914